【摘要】We revisit the studies on the evolution of house prices in the USA using a spatio-temporal model estimated using a Bayesian method. This method introduces a new specification of an error correction model with random effects measured continuously in space. This model allows observing the deviations from the co-integration relationship in each analyzed location and a clearer interpretation of the house price dynamics between 1975 and 2011 for 381 metropolitan areas in the USA. The results indicate the presence of a housing price cycle; consistent with the patterns observed in the analyzed period.
【文献来源】Laurini M P.Annals of regional Science.2017(1)